nullity$54016$ - définition. Qu'est-ce que nullity$54016$
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est nullity$54016$ - définition

THEOREM
Rank theorem; Rank nullity theorem; Rank-nullity theorem; Rank-nullity; Rank nullity
  • Rank–nullity theorem

Nullity         
WIKIMEDIA DISAMBIGUATION PAGE
Nullity (disambiguation)
·noun That which is null.
II. Nullity ·noun The quality or state of being null; nothingness; want of efficacy or force.
III. Nullity ·noun Nonexistence; as, a decree of nullity of marriage is a decree that no legal marriage exists.
nullity         
WIKIMEDIA DISAMBIGUATION PAGE
Nullity (disambiguation)
n.
1.
Non-existence, nonentity, nihility, nothingness, insignificance.
2.
Nothing, nonentity.
3.
Invalidity, inefficacy.
Declaration of nullity         
DECLARATION OF NULLITY OF A MARRIAGE BY AN ECCLESIASTICAL TRIBUNAL
Declaration of Nullity; Annulment (Catholic Church)
In the Catholic Church, a declaration of nullity, commonly called an annulment and less commonly a decree of nullity,Annulment/Decree of Nullity, EWTN.com, accessed 9/11/2015 and by its detractors, a "Catholic divorce", is an ecclesiastical tribunal determination and judgment that a marriage was invalidly contracted or, less frequently, a judgment that ordination was invalidly conferred.

Wikipédia

Rank–nullity theorem

The rank–nullity theorem is a theorem in linear algebra, which asserts

  1. of a matrix M that its rank + its nullity = the number of columns, and
  2. of a linear transformation that the dimension of the domain is the sum of the transformation's rank (the dimension of its image) and its nullity (the dimension of its kernel).